Colourful Theorems and Indices of Homomorphism Complexes

نویسندگان

  • Gábor Simonyi
  • Claude Tardif
  • Ambrus Zsbán
چکیده

We extend the colourful complete bipartite subgraph theorems of [G. Simonyi, G. Tardos, Local chromatic number, Ky Fan’s theorem, and circular colorings, Combinatorica 26 (2006), 587–626] and [G. Simonyi, G. Tardos, Colorful subgraphs of Kneser-like graphs, European J. Combin. 28 (2007), 2188–2200] to more general topological settings. We give examples showing that the hypotheses are indeed more general. We use our results to show that the topological bounds on chromatic numbers of digraphs with tree duality are at most one better than the clique number. We investigate combinatorial and complexity-theoretic aspects of relevant order-theoretic maps.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Colourful transversal theorems

We prove colourful versions of three classical transversal theorems: the Katchalski-Lewis Theorem “T(3) implies T-k”, the “T(3) implies T” Theorem for well distributed sets, and the Goodmann-Pollack Transversal Theorem

متن کامل

Groups and Ultra-groups

In this paper, in addition to some elementary facts about the ultra-groups, which their structure based on the properties of the transversal of a subgroup of a group, we focus on the relation between a group and an ultra-group. It is verified that every group is an ultra-group, but the converse is not true generally. We present the conditions under which, for every normal subultra-group of an u...

متن کامل

On the Functoriality of Cohomology of Categories

In this paper we show that the Baues-Wirsching complex used to define cohomology of categories is a 2-functor from a certain 2-category of natural systems of abelian groups to the 2-category of chain complexes, chain homomorphism and relative homotopy classes of chain homotopies. As a consequence we derive (co)localization theorems for this cohomology.

متن کامل

Tensors, colours, octahedra

Several theorems in combinatorial convexity admit colourful versions. This survey describes old and new applications of two methods that can give such colourful results. One is the octahedral construction, the other is Sarkaria’s tensor method.

متن کامل

A Further Generalization of the Colourful Carathéodory Theorem Frédéric Meunier and Antoine Deza

Given d + 1 sets, or colours, S1,S2, . . . ,Sd+1 of points in Rd , a colourful set is a set S ⊆ ⋃i Si such that |S ∩Si | ≤ 1 for i = 1, . . . ,d +1. The convex hull of a colourful set S is called a colourful simplex. Bárány’s colourful Carathéodory theorem asserts that if the origin 0 is contained in the convex hull of Si for i = 1, . . . ,d + 1, then there exists a colourful simplex containing...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Electr. J. Comb.

دوره 20  شماره 

صفحات  -

تاریخ انتشار 2013